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GDPA_LDSICS: graph and double pyramid attention network 
based on linear discrimination of spectral interclass slices for 
hyperspectral image classification
Haiyang Wua, Cuiping Shia and Liguo Wangb

aCollege of Electronic and Communication Engineering, Qiqihar University, Qiqihar, China; bCollege of 
Information and Communication Engineering, Dalian Nationalities University, Dalian, China

ABSTRACT
In recent years, convolution neural networks (CNNs) and graph 
convolution networks (GCNs) have been widely used in hyperspec
tral image classification (HSIC). CNNs can effectively extract the 
spatial spectral features of hyperspectral images (HSIs), while 
GCNs can quickly capture the structural features of HSIs, which 
makes the effective combination of the two is beneficial to improve 
classification performance of hyperspectral images. However, the 
high redundancy of feature information and the problem of small 
sample are still the major challenges of HSIC. In order to alleviate 
these problems, in this paper, a new graph and double pyramid 
attention network based on linear discrimination of spectral inter
class slices (GDPA_LDSICS) is proposed. First, a linear discrimination 
of spectral inter class slices (LDSICS) module is designed. The 
LDSICS module can effectively eliminate a lot of redundancy in 
spectral dimension, which is conducive to subsequent feature 
extraction. Then, the spatial spectral deformation (SSD) module is 
constructed, which can effectively correlate the spatial spectral 
information closely. Finally, in order to alleviate the problem of 
small sample, a double branch structure of CNN and GCN is devel
oped. On the CNN branch, a double pyramid attention (DPA) struc
ture is designed to model context semantics to avoid information 
loss caused by long-distance feature extraction. On the GCN 
branch, an adaptive dynamic encoding (ADE) method is proposed, 
which can more effectively capture the topological structure of 
spatial spectral features. Experiments on four open datasets show 
that the GDPA_LDSICS can provide better classification perfor
mance and generalization performance than other most advanced 
methods.
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1. Introduction

Hyperspectral image (HSI) is a kind of three-dimensional data containing rich spatial 
information and spectral information, and each sample corresponds to a specific object 
(Malthus et al. 2003). This makes HSIs widely used in practical life and production. For 
example, military exploration, agricultural vegetation, pollution monitoring, medical 
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diagnosis, etc. (Yuen and Richardson 2010). This is all thanks to an important remote 
sensing technology, namely hyperspectral image classification (HSIC).

In the early days, HSIC techniques were mainly based on some traditional machine 
learning methods (Melgani and Bruzzone 2004). Representative methods include the 
support vector machine (SVM) proposed by (Pal 2008) and the sparse representation 
classification (SRC) proposed by Chen, Nasrabadi, and Tran (2010). These methods are 
relatively simple to model. However, only the spectral information of the HSI is 
concerned, and do not associate spatial information with spectral information, thus 
affecting the classification effect. In recent years, some deep learning models have 
been applied to HSIC, and gradually become the mainstream of research. Such as 
deep belief networks (DBNs) (Chen, Zhao, and Jia 2015), stacked autoencoder (SAE) 
networks (Chen et al. 2014), convolutional neural networks (CNNs) (Chen et al. 2016), 
graph neural networks (GNNs) (Kang et al. 2021), etc. DBNs and SAE are capable of 
processing HSI high-dimensional spectral information. However, there are strict 
requirements for the size of the input, which makes a part of the spatial information 
lose and affects the final classification result. CNNs and GCNs are different from them. 
CNN is a special sparse representation method, and the local connection method 
makes it have excellent feature extraction ability. Recently, some excellent CNNs 
methods have been proposed, such as one-dimensional convolutional neural net
works (1-D CNNs)[23] and two-dimensional convolutional neural networks 
(2-D CNNs). However, they only focus on the feature information of a single spatial 
or spectral, and do not associate spatial features with spectral features. Therefore, an 
automatic design of convolutional neural network (AD-CNN) (Chen et al. 2019) was 
proposed by Chen et al. AD-CNN combines one-dimensional convolution with three- 
dimensional convolution (Ying, Zhang, and Shen 2017) to explore spatial spectral 
union features. And the best network framework is obtained by using the neural 
architecture search (NAS) (Nakai, Matsubara, and Uehara 2020). However, shallow 
CNNs cannot greatly improve the classification accuracy. Therefore, some deep net
work structures have been proposed. A spectral-spatial residual network (SSRN) 
(Zhong et al. 2018) was proposed to connect three-dimensional convolutional kernels 
using a residual structure that could deepen the network depth and extract deep 
features without overfitting the network. On this basis, a densely connected con
volutional network (DenseNet) (Paoletti et al. 2018; Yang et al. 2018; Yu et al. 2021; 
Zhang et al. 2021; Zhao et al. 2021) has been proposed, which can repeatedly use 
the same feature to expand the depth of the network. After this, a unified multi-scale 
learning framework (UML) (Wang et al. 2020) was proposed. UML considers multiple 
ranges of features and uses a multi-scale strategy for channel shuffling to improve 
the robust performance of the network.

With the development of CNNs, attention-based CNNs (Sun et al. 2020, 2022) have 
also been applied to HSIC. The attention network can highlight important feature 
information, directly establish the dependency relationship between input and out
put, and process it with the CNN to reduce the information loss of long-distance 
feature extraction. For example, a residual spectral – spatial attention network 
(RSSAN) (Zhu et al. 2021) was proposed by Zhu et al. It uses a residual structure to 
unify spatial attention with spectral attention. And after attention, a large number of 
residual structure modules are used to extract the spatial spectral features, effectively 
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improving the classification accuracy. After this, the multi-attention fusion network 
(MAFN) (Li et al. 2022) was proposed by Li et al. MAFN integrates multiple attention 
and realizes the complementation of attention information. In addition, in order to 
improve the attention ability of attention, a dual-triple attention network (DTAN) (Cui 
et al. 2022) was proposed by Cui et al. and achieved significant classification effects. 
However, when using attention to explore spatial information, classification results 
are disturbed by the rotation of features. Thus, a rotation-invariant attention (RIA) 
(Zheng et al. 2022) was proposed by Zheng. RIA has invariance to spatial rotation 
and facilitates HSI classification.

However, CNNs’ single fixed mesh processing method limits their feature extrac
tion capabilities. GCNs, on the other hand, can act directly on graph structures and 
process graph data in non-Euclidean space (Liu et al. 2021). Therefore, some GCN- 
based HSIC have been proposed. The classic GCNs are capable of exploring com
plex non-Euclidean spatial graph data. However, GCNs need to input all pixels in 
the graph as vertices. Obviously, using this way to process large hyperspectral data 
sets will make computational costs higher. To this end, a multi-scale dynamic 
graph convolutional network (MDGCN) (Wan et al. 2020) was proposed, which 
first used hyperpixel segmentation to segment the entire HSI into multiple small 
pieces, each containing several pixels. These small blocks are then entered as 
vertex features to reduce computational costs. And MDGCN adopts a multi-scale 
segmentation method, so that GCN can fully extract spatial information. In order to 
reduce the influence of redundant information on the classification effect, a spatial 
pooling graph convolutional network (SPGCN) (Zhang et al. 2022) was proposed, 
SPGCN uses spatial pooling to retain basic characteristics, while removing some 
redundant information, so that the classification accuracy has been significantly 
improved.

While there are already many excellent CNN or GCN-based methods for HSIC, there are 
still some shortcomings. First, HSI is a high-dimensional stereo data, which contains a lot 
of redundant information. Dealing with it directly not only makes the calculation costly, 
but also affects the classification effect. Second, it is difficult to make full use of spatial and 
spectral features for classification using CNN or GCN alone. Finally, achieving high- 
precision classification in the case of small samples still requires continuous exploration 
of the feature extraction capabilities of the network.

To this end, this paper combines CNN with GCN, and a new graph and double pyramid 
attention network based on linear discrimination of spectral interclass slices 
(GDPA_LDSICS) is proposed. First of all, a linear discrimination of spectral inter class slices 
(LDSICS) module, which can effectively remove highly redundant information and facil
itate subsequent feature extraction. And the high-dimensional spectral information is 
mapped to the low-dimensional linear space to reduce the computational cost. In addi
tion, in order to further reduce the amount of parameters, GDPA_LDSICS uses patches 
input. Then, a spatial spectral deformation (SSD) module was designed to effectively 
correlate spatial and spectral information. Finally, the cross-fusion method of CNN and 
GCN is used to extract deep features. In particular, on the CNN branch, double pyramid 
attention (DPA) was proposed to model contextual semantics to avoid information loss 
caused by long-distance feature extraction. On the GCN branch, an adaptive dynamic 
encoder (ADE) is proposed to capture spatial spectral features more completely.
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The main contributions to this article include the following four parts:

(1) A LDSICS module is proposed. The LDSICS can remove similar local bands between 
different objects in the spectral dimension by slicing. The remaining spectral 
information is projected to a low-dimensional space with the largest interclass 
distance and the smallest distance within the class. This module can not only 
remove redundant spectral information, but also significantly reduce the comput
ing cost.

(2) A DPA module is designed. The double pyramid tight structure of DPA can extract 
more complete context information over a long distance, reduce the information 
loss during the process of feature extraction. In addition, the group convolution of 
the pyramid structure can extract richer feature information with fewer parameters.

(3) In order to better integrate CNN and GCN, an ADE module is constructed. The ADE 
module adaptively and dynamically encodes adjacency matrix through autocorre
lation, which can dynamically capture topological structure of spatial spectral 
correlation features, and make CNN and GCN more compatible.

(4) In order to effectively extract the spatial spectral correlation features, an SSD 
module is designed. SSD uses spectral spatial convolution to extract spectral 
features and spatial features successively, and significantly improves the nonlinear 
representation ability of spectral features. And the structure of dense connections 
enables SSD to extract more abundant deep features.

The rest of this paper is organized as follows. Section 2 introduces the GDPA_LDSICS 
network proposed in this paper and the four modules proposed in detail. Section 3 
presents the hyperspectral datasets covered in this paper. In addition, all experimental 
results and analysis are provided. Finally, the conclusions are given in Section 4.

2. Methodology

In this paper, a GDPA_LDSICS network is proposed. Through cross fusion of CNN and GCN, 
GDPA_LDSICS network enables better classification of HSIs with small samples training. 
GDPA_LDSICS consists of four modules, including LDSICS, SSD, ADE and DPA, which will 
be described in detail.

2.1. The overall structure of GDPA_LDSICS

The goal of HSIC is to accurately assign corresponding labels to the objects in the image. 
Represents the HSI data as x 2 Rh�w�b and the label data as y 2 Rh�w . Where h, w, and b 
represent the height, width, and number of bands of HSI, respectively. First, GDPA_LDSICS 
preprocesses x through LDSICS. Second, a small number of pixel samples are randomly 
selected from x, and the pixels centred on them will be split into different patches as 
input. GDPA_LDSICS can make predictions for all pixels after training. The overall 
GDPA_LDSICS framework is shown in Figure 1. Specifically, the step 1 of GDPA_LDSICS 
first uses LDSICS to remove spectral bands that are highly similar between classes in x and 
project the remaining bands into low-dimensional space. It avoids the interference of 
redundant information on training and greatly reduces the amount of parameters for 
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network training. Then, in the step 2, the SSD module is used to extract spectral features 
and spatial features successively, and correlate spectral features with spatial features to 
achieve joint extraction of spatial spectral features. Subsequently, in the step 3 and step 4, 
the features are further extracted by two branches. In particular, on the GCN branch, the 
ADE module is proposed to dynamically extract the spatial topological features fused with 
spectral features and make the GCN and CNN structures more consistent. On the CNN 
branch, the DPA module is designed. The DPA uses multi-scale modelling to make the 
context semantic more complete, and the tight structure of the double pyramid avoids 
the loss of information for long-distance feature extraction. In addition, group convolu
tion has been introduced in the DPA, enabling richer features to be obtained at low 
computational cost. Finally, in the step 5, the fully connected layer is used to obtain 
classification results.

2.2. LDSICS module

As shown in Figure 2, the raw data of HSI has interclass similarity problems in spectral 
bands, which seriously interferes with the feature extraction of the network. At the same 
time, the high-dimensional HSI data also increases the difficulty of network processing. In 
addition, directly using the entire HSI as input will also bring a huge amount of para
meters, making it difficult for the network to converge. Inspired by the linear discriminant 
analysis (LDA) method, a LDSICS module was proposed. LDSICS can preprocess HSI to 
remove similar spectral bands between classes and map high-dimensional HSI data to 
low-dimensional space.

Specifically, first transform HSI data x 2 Rh�w�b into a two-dimensional matrix x0with 
size s� b, and the process can be described as 

Figure 1. The overall structure of GDPA_LDSICS (the processing of GDPA_LDSICS is divided into 
5 steps, and they are divided by red dotted lines in the figure).
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x0 ¼ re xð Þ x 2 Rh�w�bx0 2 Rs�b (1) 

Where, s ¼ h� w, re �ð Þ represents the reshaping operation. Slicing x0 column by column 
yields the set θ, and normalizes each element in θ to get θ0. The details are as follows 

θ
0

¼ BN θð Þ ¼ BN ϕ� 1 x0ð Þð Þ x0 2 Rs�b (2) 

Where BN �ð Þ and ϕ� 1 �ð Þ represent the normalization function and the operation of slicing 
column-by-column, respectively. θ0 is a slice set containing b elements. Then, the coeffi
cient of variation is used to determine the similarity of bands between classes, and the 
bands are sorted according to the similarity. Next, n inter class similar bands are removed 
by slicing, and the basic characteristics of HSI are retained to obtain X . The related process 
can be represented as 

� ¼ σjσ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
s

Ps

i¼1
θ0 i � θ0 i
� �2

s

θ0 i

8
>>>><

>>>>:

9
>>>>=

>>>>;

ðs ¼ h� w; 1 � i � bÞ (3) 

Figure 2. Local spectral of different data sets (different color curves correspond to different ground 
object).
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X ¼ @j@ ¼ ϕ� 1 H �ð Þð Þf g (4) 

In Equation (3), θ0 i represents the i-th element in set θ0, and �θ0 i is the mean value 
of the i-th element in θ0. Similar to θ0, � is also a set containing b elements. 
Furthermore, the elements in � are coefficients of variation of the elements in θ0. 
In Equation (4), H �ð Þ is the sort operation. The coefficients of variation are sorted to 
facilitate the removal of bands with smaller coefficients of variation, that is, the 
removal of similar bands between classes. In particular, these processes lay a solid 
foundation for the subsequent search for the optimal projection spatial. After 
removing the interclass similarity bands, proceed to calculate the between-class 
scatter matrix and the within-class scatter matrix of X . And use them to construct 
the objective function , ωð Þ. In particular, in order to make the processed HSI data 
more conducive to classification tasks, the between-class scatter matrix should be 
as large as possible and the within-class scatter matrix should be as small as 
possible, that is, to project X in the direction of , ωð Þ maximum. In this way, the 
spectral features of the same class in HSI are more concentrated, while the spectral 
features of different classes are more dispersed, which is more conducive to the 
classification of HSI. Thus, using the Lagrange multiplier method to optimize the 
objective function , ωð Þ yields the projection spatial Ω, which can be repre
sented as 

BSw ¼
Xc

i¼1

BSwi
¼
Xc

i¼1

X

a2Xi

a � μið Þ a � μið Þ
T (5) 

BSτ ¼
Xc

i¼1

mi μi � μð Þ μi � μð Þ
T (6) 

Ω ¼ arg max
W

l Wð Þð Þ ¼ arg max
W

tr WTBSτW
� �

tr WTBSwWð Þ
(7) 

In Equation (5), c is the number of categories of samples, μi is the average value of the 
sample vector of the i-th category, and BSw represents the within-class scatter matrix. In 
(6), mi is the total number of samples in the i-th category, μ is the average value vector of 
the entire sample set, and BSτ is between-class scatter matrix. In Equation (7), tr �ð Þ
represents the trace of the calculated matrix, arg max �ð Þ is the optimization function, 
and Ω is the resulting projection spatial.

The proposed LDSICS is a linear, supervised pretreatment approach. The processing 
process of LDSICS is shown in algorithm 1. In the LDSICS, the redundant spectral informa
tion is removed first, and then the linear dimensionality reduction is carried out, which can 
maximize the retention of the characteristic information conducive to HSIC. In addition, 
the projection spatial obtained by LDSICS makes the inter-class features after dimension
ality reduction more dispersed and the intra-class features more concentrated. The HSIC 
accuracy is significantly improved.
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2.3. SSD module

HSI is a three-dimensional stereoscopic data containing a wealth of spatial and 
spectral information. To effectively extract the joint features of spectral and spatial is 
one of the important means to improve the performance of HSIC. A module capable of 
extracting spatial and spectral features in turn is designed by using the structure of 
spectral- spatial convolution (SSC) and dense connection. First, the SSD processes the 
spectral information as a channel for the image, and then extracts the spatial and 
spectral features sequentially using SSC. Moreover, when extracting spectral features, 
point-wise convolution is used for feature extraction, which enhances the nonlinear 
characterization ability of spectral features. Specifically, firstly, the spectral dimension 
is transposed to the channel dimension by SSD, and spectral information is processed 
as the channel. Then, two different branches are used to extract spatial features with 
different scales. Subsequently, multiple point-wise convolutional layers are used to 
extract spectral features. In particular, when extracting spectral features, a dense 
connection structure is embedded to prevent the network from over-fitting. This 
process can be expressed as 

S W x;yð Þ

� �
¼ relu BN cat

X

W x;yð Þ2X

f W x;yð Þ

� �
þ b;

X

Wn2X

f 0 W x;yð Þ

� �
þ b0

0

@

1

A

0

@

1

A

0

@

1

A (8) 

SL ¼ ψ S0; S1; � � � ; SL� 2; SL� 1ð Þ L 2 0; 3ð �; S0 ¼ S W x;yð Þ

� �
(9) 

In Equation (8), X is the input mesh data. W x;yð Þ enumerates each position of X . cat �ð Þ is 
a connection operation. BN �ð Þ represents a normalized function. relu �ð Þ is the activation 
function. f �ð Þ and f 0 �ð Þ represent pointwise convolution kernels with different numbers of 
channels, respectively. b and b0 correspond to the biases of the convolutional kernels of 
f �ð Þ and f 0 �ð Þ, respectively. S W x;yð Þ

� �
is the extracted spectral features. In (9), we define ψ �ð Þ

as a nonlinear composite function, including normalization, activation functions, and two- 
dimensional convolution operations at different scales. SL represents the spatial features 
of the L-th layer.

Algorithm 1 LDSICS module

Input: HSI raw data x 2 Rh�w�b .

1. The spatial dimension of the input three-dimensional data x is flattened by Equation (1) to obtain the two- 
dimensional data x0 2 Rs�b . (s ¼ h� w)

2. Using Equation (2), slice x
0

column by column to get the set θ, and then normalize each element in θ to get θ0.
3. Calculate the coefficient of variation for each element in θ

0

. The coefficients of variation are then sorted from largest 
to smallest and the corresponding indexes are extracted.

4. Use slices for the original input data x 2 Rh�w�b and remove the bands corresponding to the first n indexes to get 
data X that removes similar bands between classes.

5. Calculating the between-class scatter matrix BSτ and the within-class scatter matrix BSw of X .
6. The objective function , ωð Þ is constructed by BSτ and BSw .

Output: Optimize the objective function , ωð Þ using the Lagrange multiplier method to get the projection spatial 
Ω 2 R b� nð Þ�ðc� 1Þ.
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2.4. ADE module

GCN mainly captures the spatial topology of the graph by modelling the vertex features 
and the adjacency matrix. Therefore, the performance of GCN on HSI classification 
depends largely on the construction of vertex features and adjacency matrices. In addi
tion, in this article, the input features of GCN include spatial features with invariance as 
well as spectral features without variability. Therefore, if the encoding of the neighbour 
matrix continues to remain fixed in the traditional GCN way, it will affect the performance 
of classification. To this end, we propose an ADE module. Using autocorrelation, the 
adjacency matrix is dynamically encoded. The structure of the ADE is shown in Figure 3.

In general, vertex features are encoded by vertex encoders. Then, the vertex feature 
adjacency relationship is found by self-correlation, and the adjacency matrix is con
structed for GCN modelling graph structural relationship. Specifically, ADE first linearly 
processes the vertex features and constructs vectors Q and vector E. Q and E then self- 
correlate and establish adjacencies and are weighted by Softmax, highlighting important 
structural features. This process can be described as 

V ¼ V Encode XS;wvð Þ V 2 Rs�b (10) 

Adj ¼ A Encode V;Wað Þ ¼ V � DN V � Soft max l Vð Þ � l Vð Þð Þð Þ (11) 

Where, XS is the output feature of the SSD, V Encode �ð Þ represents the vertex feature encoder, 
and wv is the learnable weight of the encoder. In (11), l �ð Þ represents the point convolutional 
kernel. Soft max �ð Þ is the activation function. DN �ð Þ is denoted as double normalization. 
A Encode �ð Þ is defined as a neighbour matrix encoder. Adj is the resulting neighbour matrix.

The ADE module is designed to construct a dynamic adjacency matrix and enable GCN 
to dynamically update vertex features through the adjacency matrix and training para
meters. This not only enables GCN to maximize the mining of the spatial structure features 
of the image, but also makes GCN framework more compatible with CNN framework.

Figure 3. The structure of ADE module.
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2.5. DPA module

In order to improve the HSI classification performance of the network, the method of 
increasing the network depth is usually used. However, long-distance feature extraction 
often causes a loss of a part of the information and weakens the interdependence of the 
context. With the introduction of attention mechanisms, this situation has been alleviated 
to some extent. However, the pooling of traditional attention networks will still cause 
some information loss. Therefore, the DPA module is proposed in this article.

The DPA has a dense structure of double pyramids, enabling the network to extract rich 
features. And reduce the loss of information during feature extraction. Its structure is 
shown in Figure 4. Specifically, first, the channels of the input feature map are split into 
four parts by DPA. Then, the features are extracted using multi-scale pyramid group 
convolution. Let the input feature be XS 2 Rc�h�w , and the process can be represented as

X0; X1; X2; X3½ � ¼ Split XSð Þ (12) 

X 0 i ¼ Fi Xi;wið Þ i 2 0; 3½ � (13) 

In (12), Split �ð Þ is the split function. X0, X1, X2 and X3 represent the four features after the 
split, respectively. In formula (13), Fi �ð Þ is the group convolution. It is worth noting that this 
paper divides the convolution into four groups. The size of each group convolution is 
different. The size of the convolution corresponds to the i-value. The values of i are 0, 1, 2, 
and 3, corresponding to the size of the convolution of 3� 3, 5� 5, 7� 7, and 9� 9, 
respectively. In particular, the use of group convolution can reduce the computational 
cost of DPA. Specifically, the parameter quantities of ordinary convolution and the 
parameter quantities of group convolution can be expressed as such 

PO ¼ k � k � cin � cout (14) 

Figure 4. The structure of DPA module.
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PG ¼ k � k �
cin

G
�

cout

G
� G (15) 

Where k is the size of the convolution. cin and cout are the input and output channels of the 
convolution, respectively. PO and PG are the parameter quantities of ordinary convolution 
and the parameter quantities of group convolution, respectively. In (15), G represents the 
number of groups for group convolution. Obviously, in the case of the same size of the 
convolution, the amount of parameters for the group convolution is much smaller than 
the amount of parameters for the ordinary convolution. And, as the number of groupings 
for group convolution increases, this advantage becomes more obvious.

For traditional attention methods, the model establishes using a single global average 
pooling (GAP) will lead to the loss of some feature information. Inspired by Wang et al. 
(2018), we first build the pyramid pooling structure using three adaptive average pooling 
(AAP) with different sizes. It is then optimized through two fully connected layers. An 
activation function has been added between the two fully connected layers to enhance 
the nonlinear representation of features. Next, the attention mask is obtained by normal
ization, and the attention mask is multiplied and connected together with the features 
extracted by the multi-scale pyramid group convolution. Finally, in order to prevent 
overfitting of network training, residual connections are also added to the DPA. This 
process can be described as 

Oi ¼ Sigmiod FC PP X 0 ið Þð Þð Þ i 2 0; 3½ � (16) 

O ¼ relu XS þ F cat Oið Þð Þð Þ i 2 0; 3½ � (17) 

In (16), X 0 i is the output feature of the multi-scale pyramid group convolution. PP �ð Þ is the 
pyramid pooling function, and PP �ð Þ is composed of three AAPs of different sizes 2� 2, 
4� 4, and 8� 8. FC �ð Þ is a composite function consisting of two fully connected layers 
and an activation function. Sigmiod �ð Þ is the activation function. Oi is the attention mask. 
In (17), F �ð Þ is a composite function that contains point-size convolution, batch normal
ization, and activation function. O is the output of DPA.

3. Experimentation and analysis

In this part, the data set selected for the experiment and the parameter settings of the 
experiment are described. In addition, in order to verify the effectiveness of 
GDPA_LDSICS, a large number of experiments were conducted.

3.1. HSI datasets

To verify the network performance of GDPA_LDSICS, four classic datasets are selected in 
this paper. As shown in Figures 5–8, they are Indian Pines (IN), Salinas Valley (SV), Pavia 
University (UP), and Houston2013 (HT). In order to accurately evaluate the network, three 
standards of overall accuracy (OA), mean accuracy (AA) and Kappa coefficient (Kappa) are 
uniformly selected. Specifically, IN contains 16 kinds of vegetation. Most of them are 
agricultural vegetation. IN has total of 21,025 pixels and has 200 spectral bands. However, 
only 10,249 pixels have real object. SV contains 16 kinds of agricultural vegetation, 
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including 204 bands. A total of 111,104 pixels, the object covers 54,129 pixels. The UP 
dataset has a resolution of 610� 340 and contains 103 bands. Compared with the first 
two data sets, not only the types of ground objects have changed greatly, but also the 
number of classes and bands of ground objects have decreased. UP has only 9 kinds of 
ground objects, covering 42,776 pixels. Finally, the HT dataset is an image obtained from 
the spectral range of 346 nm to 1049 nm by ITRES CASI-1500. The HT consists of 144 bands 
in total and includes 15 categories. Its ground objects cover 15,029 pixels.

3.2. Experimental environment and parameter settings

The GDPA_LDSICS is implemented on the Pycharm software of Pytorch 1.10.0 and Python 
3.7.4. For fair comparison, the hyperparameters of the comparison algorithm are the same 
as those of the original network. And, all experiments use a unified hardware platform. The 
CPU we use is AMD Ryzen 75,800 H with Radeon Graphics. The GPU uses the NVIDIA 
GeForce RTX 3070 with 8GB of memory. To improve the computational speed, the GPU is 
used for network training. Therefore, the operating environment of CUDA11.2 was chosen. 
First, GDPA_LDSICS uses the Adam optimizer for training optimization and sets the learning 
rate to 0.001. The number of epochs is 300 times. Then, for different HSI datasets, different 
proportions of training samples were randomly selected. In IN, 3% of the sample is used as 
the training set. In SV and UP, 0.5% of the sample is used as the training set. In HT, a 5% 
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Figure 5. Categories and number of ground objects in IN.
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sample is used as the training set. In addition, through a large number of experimental 
comparisons, the n value of the optimal input patch size and LDSICS was determined. 
Specifically, the input patch size and n are set to 5 different values, and the OA changes are 
observed experimentally.
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As can be seen from Figure 9, the higher OA values are all concentrated near the patch with 
input 9� 9 and behave similarly on four datasets. Therefore, this article sets the patch size of 
the network to 9� 9. In addition, on the four datasets, when the size of the input patch of the 
network is determined, the classification accuracy of the network first increases and then 
decreases as n increases. Firstly, the classification accuracy of the network increases with the 
increase of n. This is because the redundant information in HSIs is effectively removed by 
LDSICS, thereby improving the classification performance of the network. When the classifica
tion performance of the network reaches its peak, the classification accuracy of the network 
will decrease if the n value continues to increase. This is because some spectral information 
that is conducive to classification in HSIs has also been removed. Therefore, in order to achieve 
the best performance of the network, different n is used on different datasets. Specifically, set 
the n values of IN, SV, HT and UP to 20, 15, 10 and 5 in turn. Finally, to ensure the credibility of 
the experimental results, all results are the average of 10 replicated experiments, and the 
optimal experimental data in all tables will be marked in bold.

3.3. Performance analysis of proposed modules

In this section, in order to verify the performance of the proposed modules, ablation 
experiments are performed on different modules. And the experimental results were 
analysed.

3.3.1. Performance analysis of the LDSICS
The LDSICS module is proposed to remove the influence of highly redundant spectral 
information on the classification effect, and reduce the dimension of spectral information 
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to facilitate network feature extraction. To verify the performance of the LDSICS, a series of 
ablation experiments were conducted. Specifically, keeping other experimental conditions 
unchanged, only GDPA_LDSICS with the LDSICS modules removed will be compared experi
mentally with GDPA_LDSICS with the LDSICS modules. The result is shown in Figure 10. 
Obviously, the GDPA_LDSICS using the LDSICS has significant improvements in classification 
performance on different datasets compared to unused the LDSICS. Specifically, on the IN 
and SV, the improvement of classification accuracy by the LDSICS is more obvious. This is due 
to the fact that IN and SV contain a larger number of ground objects and that most of these 
ground objects are similar crops. Therefore, their spectral information is relatively similar. 
Therefore, when using the LDSICS to remove these indistinguishable inter-class similar bands, 
the classification effect is naturally significantly improved. This also fully proves that the 
LDSICS can effectively improve the classification performance of the network.

In order to more intuitively demonstrate the effectiveness of LDSCIS, Scatter plots before 
and after processing using LDSICS on the IN dataset are compared in this section. As shown in 
Figure 11(a) the spectral values of different classes in the original spectral scatter plots of the 
IN dataset almost completely overlap in some bands, and these overlapping spectral 

(a) (b)

(d)(c)

Figure 9. When inputting different patch sizes, the relationship between the n value of LDSICS and the 
OA. (a)-(d) IN、SV、UP、HT.
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information will seriously affect the final classification results. As shown in Figure 11(b), the IN 
dataset shows significant distinguish-ability of spectral values between different classes after 
the LDSICS processing proposed in this article. It is obvious that the data processed by LDSICS 
is more conducive to the classification of HSI.

In addition, when the GDPA_LDSICS uses the LDSICS, the cost of computing is sig
nificantly reduced. As shown in Table 1, the amount of parameters in the GDPA_LDSICS is 
almost halved after using the LDSICS. It is explained that the LDSICS can reduce the 
calculation difficulty of the network, save computing resources, and improve the comput
ing speed of the network. And the LDSICS as a plug-and-play module, it provides great 
convenience for the study of lightweight networks of HSICs.

Figure 10. Effect of the LDSICS on classification results.
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Figure 11. Local spectral scatter plots of the in dataset. (a) spectral scatter plots of the original in 
dataset; (b) spectral scatter plots of the in dataset processed by LDSICS. (different colored dots 
correspond to spectral values of different classes).
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3.3.2. Performance analysis of the SSD
In this section, the classification performance of the GDPA_LDSICS that only removes SSDs 
is compared with the classification performance of the complete GDPA_LDSICS. The 
experimental results are shown in Figure 12. Obviously, with the SSD module, the 
classification accuracy of GDPA_LDSICS on all four data sets has been significantly 
improved. This shows that SSD first extracts spectral features and spatial features, and 
then realizes the joint extraction of spatial spectral features, which can more effectively 
extract the spatial spectral features of HSI and use them for classification.

3.3.3. Performance analysis of the ADE
For the performance analysis of ADE, the same experimental method is used. The experi
mental results are shown in Figure 13. Similarly, from Figure 13, it can be concluded that 
the ADE is beneficial to improve the classification performance of GDPA_LDSICS. This is 
due to the ability of ADE to dynamically code adjacency matrices to update vertex 
features that enable the GDPA_LDSICS to mine rich spatial topology features.

3.3.4. Performance analysis of the DPA
DPA has a tight structure of double pyramids that can extract rich deep features. And the 
attention modelling is carried out by using the way of pyramid pooling, which reduces the 
loss of feature information. To verify the performance of DPA, some experiments were 

Figure 12. Effect of the SSD on classification results.

Table 1. The LDSICS effect on the amount of parameters.
METHOD IN SV UP HT

Without LDSICS 680K 531K 686K 594K
With LDSICS 396K 385K 396K 394K
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performed and the results were shown in Figure 14. As can be seen from Figure 14, the 
GDPA_LDSICS using DPA shows a steady improvement in classification accuracy on all 
four data. This shows that the DPA has strong generalization and can adapt to different 
scenarios.

Figure 13. Effect of the ADE on classification results.

Figure 14. Effect of the DPA on classification results.
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3.4. Analysis of feature fusion

In the method proposed in this paper, CNN and GCN can work collaboratively. The 
classification performance of the network can be improved effectively by fusing features 
extracted from CNN and GCN. In order to intuitively analyse the impact of feature fusion 
on the network, the analysis of feature fusion on the IN dataset is given in this section.

As shown in Figures 15(a) and 11(b), the same classes in the GCN branch are more 
clustered compared to the CNN branch. This is because GCN can capture the internal 
structural relationships between ground objects. However, there is more mixing between 
different categories in the GCN branch compared to the CNN branch, which is due to the 
stronger ability of CNN to extract fine features and local features compared to GCN. 
Overall, although both GCN and CNN working alone can achieve good classification, there 
are also some shortcomings. To this end, in this paper, CNN and GCN are integrated to 
effectively improve network classification performance. As shown in Figure 15(c), com
pared to using CNN or GCN alone, not only are the same classes more clustered, but there 
is also less mixing between different classes.

3.5. Comparison of different methods

In this section, GDPA_LDSICS proposed in this paper is compared with seven methods. 
These methods include CDCNN (Lee and Kwon 2017), SVM, DBMA (Ma et al. 2019), SSRN, 
FDSSC (Wang et al. 2018), DBDA (Li et al. 2020), FECNet (Shi et al. 2022), A2S2KResNet (Roy 
et al. 2021) and FDGC (Liu et al. 2022). Among them, the CDCNN is a simple and effective 
CNN classification method. It combines multi-branch convolution with maximum pooling 
and uses a residual structure. The SVM is a classic machine learning and is a pixel-by-pixel 
classification method based on radial basis functions (RBF) kernels. The SSRN and FDSSC 
optimize the network using residual and dense connections, respectively, to deepen 
network depth. Both the DBDA and DBMA are classification methods based on attention. 
The difference is that the DBDA uses double-branched and dual-attention, while the 
DBMA uses double-branched multi-attention. In FECNet, dilation convolution is used to 
reduce the amount of network parameters and a feedback mechanism is used to fuse the 
shallow and deep features extracted by the network. An improved 3D-ResNet is adopted 

(a) (b) (c)
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Figure 15. Analysis of feature fusion on in datasets. (a) visualization of GCN branch; (b) visualization of 
CNN branch; (c) visualization of GDPA_LDSICS.
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by A2S2ResNet to extract image features and this network can improve classification 
accuracy through effective feature recalibration (EFR). The FDGC uses three branches to 
extract features separately and is a classification method that combines CNN and GCN.

3.5.1. Comparison of classification results
Table 2–5 reports the classification results of GDPA_LDSICS and other methods on 
four datasets. As can be seen from Table 2, on the IN, GDPA_LDSICS’s OA, AA, 
KAPPA three indicators are higher than other methods. For the classification 
accuracy of each category on the IN, GDPA_LDSICS has 12 categories with higher 
classification accuracy than other methods. On the other 3 datasets, similar con
clusions were drawn. In particular, Table 4 reports the classification results of all 
methods on the UP. As can be seen from Table 4, GDPA_LDSICS has achieved 
greater advantages in all evaluation indicators than other methods. This is due to 
the fact that the different categories of spectral information in the UP are more 
dispersed than other datasets, which is more conducive to the work of the 
GDPA_LDSICS preprocessing phase. Looking at the classification results of all the 
methods in 4 datasets, GDPA_LDSICS always showed the best classification effect. 
This fully proves the excellent classification performance and generalization of 
GDPA_LDSICS. In addition, in order to explore the network computing complexity 
of the proposed method, the running times of different methods on different 
datasets, including testing time and training time, are also shown in Tables 3 to 
6. Specifically, on different datasets, the runtime of the proposed method is only 
slightly higher than that of FDGC, but much lower than that of other methods. This 
indicates that the proposed method has a lower network computational complex
ity. This is thanks to the proposed network reducing spectral dimensions through 
LDSICS. On the other hand, group convolution in DPA can significantly reduce the 
computational complexity of the network.

Table 2. Comparison between GDPA_LDSICS and other methods on IN.
Class CDCNN SVM DBMA SSRN FDSSC DBDA FECNet A2S2KResNet FDGC GDPA_LDSICS

1 24.67 36.62 77.33 81.03 85.72 99.06 99.06 94.32 49.46 100.0
2 49.93 55.48 78.68 87.48 93.35 92.74 96.63 92.99 88.34 98.06
3 31.93 62.33 76.12 76.35 89.51 92.28 93.25 94.51 91.24 98.05
4 33.52 42.53 75.11 73.88 93.68 94.46 95.61 94.43 98.98 99.06
5 71.47 85.05 94.91 84.28 92.61 99.10 98.55 97.62 81.20 98.62
6 73.52 83.31 93.99 92.68 98.31 98.28 97.51 97.68 96.76 99.12
7 36.29 59.86 44.33 79.06 82.46 66.57 73.14 76.17 68.49 100.0
8 78.08 89.67 97.49 96.85 97.54 99.24 99.84 100.0 99.13 100.0
9 42.14 39.27 45.66 73.57 71.07 93.64 79.71 61.96 97.44 100.0
10 41.71 62.31 77.27 84.45 89.30 93.77 90.09 91.23 91.99 92.10
11 55.67 64.72 83.89 86.95 93.97 93.83 96.11 94.71 95.67 98.11
12 27.68 50.54 77.65 83.31 88.25 90.65 93.20 92.44 85.46 97.71
13 67.88 86.73 96.74 98.83 99.53 97.48 98.34 96.62 91.59 99.46
14 76.39 88.67 93.51 95.13 95.82 97.69 97.28 97.68 97.77 94.47
15 47.30 61.81 76.83 88.58 92.48 93.79 95.11 92.37 91.57 98.71
16 65.67 98.66 92.33 96.52 98.22 93.67 97.26 91.71 89.9 97.77
OA(%) 59.19 68.76 82.38 86.68 92.37 92.26 95.47 94.57 92.55 97.26
AA(%) 51.48 66.72 80.11 86.18 91.36 92.90 93.79 91.65 87.97 98.20
KAPPA� 100 78.1 63.98 79.86 84.76 91.30 91.24 94.83 93.80 91.51 96.88
Training time (s) 57.16 — 423.03 934.14 2124.94 425.72 256.58 959.01 24.55 57.16
Testing time (s) 1.91 — 16.34 4.69 9.98 16.38 16.02 6.18 1.05 1.91
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3.5.2. Comparison of classification results
Figures 16–19 show the classification maps on the four datasets. In which, IN is 
similar to SV, including more the classes of ground objects in the four data sets, 
and the classes of ground objects are also similar. In addition, in the 4 datasets, 
the number of spectral bands contained in the IN and the SV is also higher. 
Therefore, it is also more difficult to classify them. As can be seen from Figures 
16 and 17, the classification maps obtained by other methods show a lot of noise 
and without clear category boundaries. This is due to the large number of inter- 
class similar bands between IN and SV datasets, which interferes with the feature 
extraction of the network. However, the GDPA_LDSICS still exhibits a high classi
fication effect compared to other methods. This is because the GDPA_LDSICS can 
remove the similar bands between different categories through pre-processing, 
aggregate the feature information of the same classes, and disperse the feature 

Table 3. Comparison between GDPA_LDSICS and other methods on SV.
Class CDCNN SVM DBMA SSRN FDSSC DBDA FECNet A2S2KResNet FDGC GDPA_LDSICS

1 68.15 99.42 99.98 99.53 99.96 99.68 100.0 100.0 99.68 100.0
2 73.63 98.79 99.20 99.59 98.90 98.88 99.95 99.92 100.0 100.0
3 75.56 87.98 97.65 94.22 96.91 97.94 98.41 99.18 99.90 100.0
4 92.79 97.54 92.64 96.98 94.54 94.89 95.85 96.76 93.52 95.64
5 92.90 95.09 98.79 98.84 99.16 98.40 99.64 99.48 95.85 99.73
6 96.25 99.89 98.49 99.87 99.82 99.92 99.89 99.86 99.90 100.0
7 93.76 95.59 98.41 98.21 98.16 98.46 99.40 99.20 99.85 100.0
8 74.03 71.66 90.72 86.20 91.72 90.87 94.79 94.18 96.37 98.97
9 94.72 98.08 99.61 99.14 99.53 99.24 99.67 99.45 99.99 99.64
10 76.65 85.39 92.23 97.99 97.61 97.62 98.01 99.29 98.97 98.99
11 69.32 86.97 93.10 94.48 95.70 94.92 97.18 96.39 92.40 99.90
12 80.43 94.20 99.24 98.53 98.16 99.54 99.55 99.15 98.06 99.94
13 69.55 93.53 98.56 98.28 98.35 99.76 99.94 98.51 97.23 100.0
14 87.22 92.03 96.56 96.05 96.21 96.66 96.51 96.44 95.59 94.29
15 63.71 71.02 88.27 81.04 89.07 90.48 93.68 90.41 94.50 93.06
16 98.38 97.81 99.68 99.48 99.77 99.83 100.0 99.82 97.81 100.0
OA(%) 80.67 86.97 94.77 92.51 95.91 95.74 97.49 96.81 97.59 98.34
AA(%) 81.69 91.55 96.45 96.32 97.49 97.41 98.01 98.00 97.47 98.49
KAPPA� 100 78.35 85.45 94.18 91.67 95.45 95.26 97.21 96.45 97.31 98.15
Training time (s) 51.65 — 375.41 805.15 1819.6 380.11 268.62 733.87 23.54 44.17
Testing time (s) 10.56 — 92.57 28.37 56.23 92.78 124.55 20.72 5.1 8.5

Table 4. Comparison between GDPA_LDSICS and other methods on UP.
Class CDCNN SVM DBMA SSRN FDSSC DBDA FECNet A2S2KResNet FDGC GDPA_LDSICS

1 79.88 81.26 89.41 93.22 84.30 90.77 96.77 92.66 89.44 98.20
2 86.66 84.52 94.34 93.75 95.47 98.07 99.20 97.65 98.19 99.27
3 32.74 56.56 84.99 64.97 80.58 90.04 96.56 84.15 84.95 99.79
4 84.88 94.34 96.58 94.69 98.13 97.96 97.87 98.58 82.76 98.54
5 94.77 95.38 98.06 97.69 99.21 98.67 97.38 98.18 90.04 99.85
6 71.54 80.66 94.60 93.14 92.36 98.85 97.72 96.69 95.06 99.96
7 31.77 49.13 93.18 73.06 69.35 96.95 96.50 97.67 97.08 100.0
8 65.54 73.15 76.61 79.98 73.36 87.65 87.34 83.51 78.64 94.19
9 73.50 97.93 91.45 98.71 97.39 97.81 98.98 98.91 74.80 100.0
OA 80.69 82.06 90.98 89.12 90.71 95.32 96.96 94.83 92.19 98.68
AA 69.02 79.21 91.02 87.69 87.91 95.20 96.48 94.24 87.88 98.76
KAPPA� 100 73.55 75.43 87.87 85.44 87.38 93.77 95.97 93.12 89.62 98.26
Training time (s) 42.83 — 130.39 606.40 1406.32 130.68 181.27 619.50 18.81 29.73
Testing time (s) 8.13 — 39.7 12.34 25.19 40.37 69.60 17.34 3.95 7.1
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information of different classes. At the same time, the spectral dimension is 
reduced, reducing the computational cost of the network. In addition, compared 
with other methods, GDPA_LDSICS has stronger feature extraction ability. In the 

Table 5. Comparison between GDPA_LDSICS and other methods on HT.
Class CDCNN SVM DBMA SSRN FDSSC DBDA FECNet A2S2KResNet FDGC GDPA_LDSICS

1 87.59 95.62 98.11 99 98.48 86.76 97.42 96.09 92.19 99.21
2 93.83 98.37 99.81 99.02 99.82 99.9 99.39 99.69 94.91 100.0
3 91.23 98.5 100 97.49 99.52 100.0 99.92 100.0 97.55 100.0
4 97.15 96.35 97.88 98.25 97.99 99.43 99.02 97.53 96.00 97.90
5 97.69 95.17 99.19 97.02 99.9 98.92 99.63 100.0 100.0 100.0
6 98.73 99.32 99.3 99.61 100 98.47 99.65 99.73 99.04 97.56
7 88.24 92.56 98.7 91.53 89.97 93.36 96.69 96.34 97.17 99.10
8 95.3 83.08 96.45 99.5 97.95 93.91 99.61 99.92 97.15 99.90
9 78.46 82.32 96.53 85.63 92.44 88.83 94.84 96.75 98.83 95.50
10 70.99 88.78 98.05 88.13 96.88 83.29 95.20 96.62 99.19 99.63
11 75.51 92.52 97.42 91.59 99.13 91.24 97.86 98.42 99.49 99.82
12 80.23 81.91 93.77 98.54 96.26 80.28 98.72 98.35 98.75 98.90
13 94.76 77.77 92.05 86.76 83.54 97.45 92.31 95.81 95.24 100.0
14 98.17 95.97 100.0 99.48 100.0 100. 99.10 97.93 100.0 100.0
15 91.95 99.67 99.33 98.51 98.67 95.06 98.97 99.43 99.52 98.57
OA(%) 87.47 91.40 97.69 94.94 96.67 92.32 97.79 98.05 97.44 98.80
AA(%) 89.32 91.86 97.77 95.38 96.70 93.79 97.89 98.17 97.43 98.87
KAPPA� 100 86.46 90.69 97.51 94.53 96.39 91.70 97.61 97.89 97.23 98.70
Training time (s) 127.63 — 666.47 2177.71 5023.52 678.17 811.18 2333.97 80.56 102.18
Testing time (s) 2.79 — 16.73 5.07 10.47 16.83 27.98 6.75 9.82 2.48

(a) (b) (c) (d) (e)

(j)(i)(h)(g)(f)

(k)

Figure 16. Comparison of classification maps on in (the different colors in the figure correspond to 
different ground objects). (a) ground truth, (b–k) CDCNN, SVM, DBMA, SSRN, FDSSC, DBDA, FECNet, 
A2S2KResNet, FDGC, GDPA_LDSICS).
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process of feature extraction, the context semantic dependency is enhanced as 
much as possible, and the information loss is reduced.

Figures 18–19 show the classification map of UP and HT respectively. Compared 
with the other two datasets, the UP and HT datasets have fewer classes, and the 
spectral curves of different classes differ greatly, which is more conducive to HSIC. 
Nevertheless, the classification performance of other comparison methods is unsa
tisfactory. For example, Figure 18(d) is a classification map of DBMA on UP. It can 
be seen from Figure 18(d) that different classes interact with each other, and the 
boundaries between classes are ambiguous. This is due to the fact that DBMA 
adopts a single GAP to model attention, resulting in a loss of feature information. 
However, on UP, the classification map of GDPA_LDSICS proposed in this article 
has a clearer class boundary, and there are very few misclassifications, which is 
more in line with the real scene. This is due to the pyramid pooling structure of 
DPA, which reduces the information loss during attention modelling.

(a) (b) (c) (d) (e)

(j)(i)(h)(g)(f)

(k)

Figure 17. Comparison of classification maps on SV (the different colors in the figure correspond to 
different ground objects). (a) ground truth, (b–k) CDCNN, SVM, DBMA, SSRN, FDSSC, DBDA, FECNet, 
A2S2KResNet, FDGC, GDPA_LDSICS).
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3.5.3. Comparison of classification results with different training sample proportions
In practical projects, marking the ground objects of data sets will consume huge 
resources. A high-performance network must be able to achieve accurate classification 
results with a small number of training samples. In order to prove that GDPA_LDSICS 
has efficient classification performance in small sample scenarios, this paper compares 
GDPA_LDSICS with different methods in different proportions of samples. As shown in 
Figure 20, the experiment sets the training sample proportions to 1%, 5%, 10%, and 
20%, respectively. Experiments were conducted on 4 datasets and OA was used as an 
evaluation indicator. As can be seen from Figure 20, on different training sets, 
GDPA_LDSICS shows an upward trend in classification accuracy as the proportion of 
training samples increases. And GDPA_LDSICS has always shown optimal classification 
performance. However, other methods have a situation where the number of training 
samples increases but the classification accuracy decreases. It is proved that 
GDPA_LDSICS has better classification in the context of small samples. At the same 
time, it is also shown that GDPA_LDSICS has strong robustness and can adapt to 
different sample proportions.

(a) (b) (c) (d) (e)

(j)(i)(h)(g)(f)

(k)

Figure 18. Comparison of classification maps on UP (the different colours in the figure correspond to 
different ground objects). (a) ground truth, (b–k) CDCNN, SVM, DBMA, SSRN, FDSSC, DBDA, FECNet, 
A2S2KResNet, FDGC, GDPA_LDSICS).
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3.5.4. Comparison of T-SNE visualization
For the classification of hyperspectral images, different categories often interfere with each 
other. To demonstrate that GDPA_LDSICS can effectively distinguish different categories, 
this paper uses T-SNE (Vander Maaten and Hinton 2008) to visualize the classification results. 
As shown in Figures 21 and 22, the proposed method is compared with four methods with 
good performance on the more challenging SV and UP datasets. As can be seen from the 
results of Figures 21 and 22, all methods can obtain good clustering results. However, there 
are still cases of sample misclassification in some categories, which are better alleviated by 
the method proposed in this paper. For example, some other methods in Figure 21 perform 
poorly in the classification of ‘Grapes-n’ and ‘VIN-yard-u’, while the method proposed in this 
paper can better distinguish these two categories. This is because on the one hand, other 
methods do not solve the problem of interference of redundant information to classifica
tion. On the other hand, because of GDPA_LDSICS has better feature extraction ability than 
other methods. This also fully proves the effectiveness of the proposed method.

(i)

Figure 19. Comparison of classification maps on HT (the different colours in the figure correspond to 
different ground objects). (a) ground truth, (b–k) CDCNN, SVM, DBMA, SSRN, FDSSC, DBDA, FECNet, 
A2S2KResNet, FDGC, GDPA_LDSICS).
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(a)

(c) (d)

(b)

Figure 20. Classification performance of different methods with different training sample proportions 
on four data sets. (a–d) IN, SV, UP, HT.

weeds_1 weeds_2 Fallow Fallow-r-p

Fallow-s CeleryStubble Grapes-u

Soil-v-y-d L-r-4wkC-s-g-weeds L-r-5wk

L-r-6wk VIN-yard-uL-r-7wk VIN-yard-v-t

(a) (b) (c)

(d) (e)

Figure 21. T-SNE visualization of classification results on SV dataset. (a)DBDA; (b)FECNet; (c) 
A2S2KResNet; (d)FDGC; (e)GDPA_LDSICS.
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4. Conclusions

In this paper, in order to avoid the interference of redundant information on classification, 
and make full use of the spatial spectral joint features to achieve high performance 
hyperspectral image classification under the training set of small samples, a new 
GDPA_LDSICS is proposed. The GDPA_LDSICS mainly includes four parts. First, a LDSICS 
strategy is proposed to effectively eliminate highly redundant information, and map high- 
dimensional spectral information to low dimensional linear spatial to reduce computing 
costs. Then, a SSD module is proposed, which can effectively associate the spatial spectral 
information closely and realize the spatial spectral joint feature extraction. In addition, on 
CNN branch and GCN branch, DPA module and ADE module are proposed respectively. 
DPA can extract more complete context semantics and reduce the information loss during 
feature extraction. ADE module dynamically constructs adjacency matrix through self- 
correlation, which can enable GCN to more fully mine graph structure features. Finally, the 
cross fusion results of CNN and GCN are classified. A large number of experiments prove 
that the GDPA_LDSICS method is superior to some state-of-the-art methods in the case of 
small samples, both in terms of classification performance and robustness.
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